Limites et continuités

Exercice 1.

Étudier les limites fonctions suivantes :

1.
$$\frac{x \sin a - a \sin x}{x - a}$$
 en a , $a \in \mathbb{R}$.

$$\begin{array}{ccc}
1. & x-a & \text{cff } a, a \\
2. & \frac{e^{ix}-e^{ia}}{x-a} \text{ en } a, a \in \mathbb{R}.
\end{array}$$

$$\boxed{3.} \ \frac{e^{ix} + [x]}{x^2} \text{ en } +\infty.$$

$$\frac{\sin(\pi x)}{x}$$
 en 1.

4.
$$\frac{\sin(\pi x)}{x-1}$$
 en 1.
5. $\frac{1}{1-x^2} - \frac{1}{\sin \pi x}$ en 1.

6.
$$x^{\lambda}e^{\alpha x}$$
 en $+\infty$, $\lambda > 0$ et $\alpha < 0$.

Exercice 2.

Étudier les limites à droite en 0 des fonctions suivantes : $f: x \mapsto x\sqrt{x}[\frac{1}{x}]e^{ix}$, $g: x \mapsto x[\frac{1}{x}]$

Exercice 3.

Étudier les limites des fonctions suivantes en $+\infty$: $x \mapsto x[\frac{1}{x}]$, $g: x \mapsto \frac{1}{x^2}[x]$

Exercice 4.

Étudier la continuité de la fonction $g: \mathbb{R} \to \mathbb{R}$ définie par $g(x) = e^{-\frac{1}{x^2}}$ si $x \neq 0$ et f(0) = 0.

Exercice 5.

Montrer que les deux fonctions sin et cos n'admettent pas de limites en $\pm \infty$.

Exercice 6.

Soit $f: \mathbb{R} \to \mathbb{C}$ une fonction périodique, et admettant une limite en $+\infty$. Montrer que f est constante.

Exercice 7.

Soient $f,g:I\to\mathbb{R}$ deux fonctions continue, montrer que $\sup(f,g)$ et $\inf(f,g)$ sont continues sur I.

Exercice 8.

Soit k un réel de l'intervalle [0,1[notons par I l'intervalle $[0,+\infty[$. Soit $f:I\to I$ une application k-Lipschitzienne c'est-à-dire pour tout $x,y\in I$,

$$|f(x) - f(y)| \le k|x - y|$$

- 1. Montrer que f est continue sur I.
- 2. Montrer que pour tout $x \in I$, $f(x) \le kx + f(0)$.
- 3. Quelle est la limite de $x \mapsto f(x) x$ en $+\infty$.
- 4. Montrer que f admet un unique point fixe α .
- 5. Soit $(u_n)_n$ la suite définie par $u_0 \in I$ et pour tout $n \ge 0$, $u_{n+1} = f(u_n)$. Montrer que u_n converge vers α .

Exercice 9.

Soient $f : \mathbb{R} \to \mathbb{R}$ définie par f(x) = 1 si $x \in \mathbb{Q}$ et f(x) = 0 sinon.

Montrer que f est discontinue en tout point.

Exercice 10.

Soient $a, b \in \mathbb{R}$, (a < b),

 $f: [a,b] \rightarrow [a,b]$ continue. Montrer que f admet un point fixe.

Ind: on pourra considérer la fonction g définie par g(x) = f(x) - x...

Exercice 11.

Soient I un intervalle de \mathbb{R} , $f: I \to \mathbb{R}$ continue telle que $f(I) \subset \mathbb{Z}$.

Montrer que f est constante.

Exercice 12.

Soit $f : \mathbb{R} \to \mathbb{R}$ continue en 0 telle que, pour tout $x \in \mathbb{R}$; f(2x) = f(x).

Montrer que f est constante.

Ind: Exprimer $f(\frac{x}{2^n})$...

Exercice 13.

Soit $f:]0, +\infty[\to \mathbb{R}$ croissante telle que $x \mapsto \frac{f(x)}{x}$ est décroissante.

1. Soit x > 0. Montrer que pour tout $h \ge 0$

$$\frac{h}{h}f(x) \ge f(x+h) - f(x) \ge 0$$

2. Soit x > 0. Montrer que pour tout $h \ge 0$ tel x - h > 0

$$h f(x) \ge x(f(x) - f(x - h)) \ge 0$$

3. En déduire que f est continue sur $]0, +\infty[$.

Exercice 14.

Soient $f, g : [a, b] \to \mathbb{R}$ continues telles que $\forall x \in [a, b]$, g(x) < f(x).

- 1. Montrer qu'il existe $\alpha > 0$, tel que $\forall x \in [a, b]$, $\alpha + g(x) < f(x)$.
- 2. On suppose de plus que $\forall x \in [a, b], g(x) > 0$, monter qu'il existe k > 1, tel que $\forall x \in [a, b], kg(x) < f(x)$.

Exercice 15.

Soient $f,g:\mathbb{R}\to\mathbb{R}$ avec f continue et g bornée. Montrer que $f\circ g$ et $g\circ f$ sont bornées.

Exercice 16.

Soit $f: \mathbb{R} \to \mathbb{C}$ continue tel que les deux limites $\lim_{x \to +\infty} |f(x)|$ et $\lim_{x \to -\infty} |f(x)|$ existent et sont finies. Montrer que f est bornée.

Ind: Montrer que f est bornée dans un voisinage de $+\infty$ et dans un voisinage de $-\infty$, puis

Exercice 17.

On considère la fonction définie sur \mathbb{R} par $f(x) = \sin \frac{1}{x}$ si $x \neq 0$ et f(0) = 0.

- $\fbox{1.}$ Montrer que f n'est pas continue en 0.
- 2. Montrer que $f(\mathbb{R})$ est un intervalle de \mathbb{R} .

Exercice 18.

Soit $f:[0,1] \to \mathbb{R}$ continue telle que f(0) = f(1) et $n \in \mathbb{N}^*$.

- 1. Pour $0 \le k \le n-1$ on pose $\alpha_k = f(\frac{k}{n}) f(\frac{k+1}{n})$.

 Calculer $\sum_{k=0}^{n-1} \alpha_k$.
- 2. Montrer qu'il existe $c \in [0, 1 \frac{1}{n}]$, tel que $f(c) = f(c + \frac{1}{n})$

Exercice 19.

Soient I un intervalle de \mathbb{R} et $f: I \to \mathbb{R}$ continue telle que $\forall x \in I$, |f(x)| = 1. Montrer que f = 1 ou f = -1

Exercice 20.

Trouver toutes les fonctions continues $f:[0,1] \to \mathbb{R}$ tel que $\forall x \in [0,1]$, $f(x^2) = f(x)$

Exercice 21.

Soient $f, g : \mathbb{R} \to \text{deux applications continues sur } \mathbb{R}$.

- 1. Soit *D* une partie dense dans \mathbb{R} . Montrer que si pour tout $x \in D$, f(x) = g(x) alors f = g.
- 2. Montrer que si pour tout $x \in \mathbb{Q}$, f(x) = g(x) alors f = g(x)

Exercice 22.

Soit $f: \mathbb{R} \to \mathbb{R}$ non identiquement nulle, continue en 0 et telle que

$$\forall (x, y) \in \mathbb{R}^2, \ f(x+y) = f(x) + f(y)$$

- 1. Montrer que f(0) = 0.
- [2.] Montrer que f est continue sur \mathbb{R} .
- [3.] Montrer que $\forall n \in \mathbb{Z}$, f(n) = nf(1).
- 4. Montrer que $\forall r \in \mathbb{Q}$, f(r) = rf(1)
- [5.] Montrer que $f = f(1) \operatorname{Id}_{\mathbb{R}}$.

Exercice 23.

Soit $f : \mathbb{R} \to \mathbb{C}$ continue sur \mathbb{R} .

- 1. Montrer que f est bornée sur l'intervalle [-1,1].
- 2. En déduire la limité de $\frac{f(\sin(x^2))}{x}$ en $+\infty$

Exercice 24.

Soit $f : \mathbb{R} \to \mathbb{R}$ continue en 0 telle que pour tous $x, y \in \mathbb{R}$,

$$f(x + y) + f(x - y) = 2(f(x) + f(y))$$

- 1. Calculer f(0).
- $\boxed{2.}$ Montrer que f est paire.
- 3. Montrer que pour tout $n \in \mathbb{Z}$, et $x \in \mathbb{R}$, $f(nx) = n^2 f(x)$.
- 4. Montrer que pour tout $r \in \mathbb{Q}$ et $x \in \mathbb{R}$, $f(rx) = r^2 f(x)$.
- 5. Conclure.

Exercice 25.

pour $n \in \mathbb{N}^*$, soit $f_n : \mathbb{R} \to \mathbb{R}$ définie par $f_n(x) = x^n + x^{n-1} + \ldots + x - 1$.

- 1. Montrer que pour tout $n \in \mathbb{N}^*$, il existe un unique $x_n \in \mathbb{R}_+$ tel que $f_n(x_n) = 0$.
- 2. Montrer que la suite $(x_n)_n$ converge vers $\frac{1}{2}$.